

8-bit
Microcontrollers

Application Note

Rev. 8070B-AVR-11/08

AVR1316: XMEGA Self-programming

Features
• Software Access to Non-volatile Memories
• Read Calibration Byte
• Read Fuse Bytes
• Read and Write Lock Bits
• Erase, Read, and Write User Signature Row
• Erase, Read, and Write Application Section
• Erase, Read, and Write Boot Section
• CRC Generation for Application and Boot Section
• Optimized Assembly Implementation
• Driver Source Code Included

1 Introduction
This application note contains descriptions of the basic functionality of the
XMEGA™ Self-programming feature and code examples to get up and running
quickly. A driver interface written in assembly with a C interface is included as well.

Figure 1-1 Self-programming Overview

Calibration Bytes

Flash Application
Section

NVM
Interface

Flash Boot
Section

User Signature

Fuses

Lock Bits

SPM
Instruction

Z-pointer (R31:R30)

(R1:R0)

2 AVR1316
8070B-AVR-11/08

2 Module Overview
This section provides an overview of the functionality and basic configuration options
of the XMEGA Self-programming features.

2.1 The Non-volatile Memory Module
The XMEGA Flash memory, signature and calibration bytes, fuses and lock bits can
all be accessed using the Non-volatile Memory (NVM) module. The NVM module is
also used for access to EEPROM. Please refer to application note “AVR1315:
Accessing the XMEGA EEPROM” or the device datasheet for more details.

As the NVM module serves several purposes, it is important to check that the NVM
module is not busy with other operations (such as EEPROM update) before using it to
access Flash memory etc. The NVM Busy bit (NVMBUSY) in the NVM Status register
(STATUS) is set when the NVM module is busy.

Using the NVM module to perform Self-programming involves using NVM
Commands. There are commands for erasing, writing, reading etc. Several
commands require addresses or indexes to be set before issuing the command.
Some commands also return values.

There are three different command types, depending on memory and access type.
The command types are described in the next three sections. An overview of
commands and their use can be found in Section 2.5 below.

2.1.1 NVM Action-based Commands

NVM Action-based commands are instructions where the Command Execute bit
(CMDEX) in NVM Control Register A (CTRLA) has to be set in order to start an NVM
Action. The Command Execute bit has to be set after the required control registers
are set up. The NVM Action-based commands are used to access fuse bits, lock bits,
EEPROM and to calculate CRC for the Flash memory sections.

The exact procedure is as follows:

1. Load address or index into the Address registers (ADDRn) if required.
2. Load data into the Data registers (DATAn) if required.
3. Load the command code into the Command register (CMD).
4. Load the Protect IO Register signature (byte value 0xD8) into the Configuration

Change Protection register (CCP). This will automatically disable all interrupts for
the next four CPU instruction cycles.

5. Within the next four CPU instruction cycles, set the Command Execute bit (CMDEX)
in NVM Control Register A (CTRLA).

6. The operation is finished when the NVM Busy bit (NVMBUSY) is cleared.
7. Results from the operation will be available in the NVM Data registers (DATAn).

The following operations use NVM Action-based commands:

• Reading fuse bytes
• Writing lock bits
• Generating CRC for Application Section
• Generating CRC for Boot Section

 AVR1316

 3

8070B-AVR-11/08

2.1.2 LPM-based Commands

LPM-based commands are commands where the LPM instruction is used. The LPM
instruction is executed after the required control registers are set up. LPM-based
commands are used for reading Flash memories. In XMEGA devices, the application
code, calibration bytes, and signature bytes are located in Flash memory.

The exact procedure is as follows:

1. Load address or index into the Z pointer register (R31 and R30) if required.
2. Load the command code into the Command register (CMD).
3. Execute the LPM instruction.
4. The operation finishes immediately.
5. Results from the operation will be available in registers R0.

The following operations use LPM-based commands:

• Reading calibration bytes
• Reading user-accessible signature bytes
• Read Flash memory

2.1.3 SPM-based Commands

SPM-based commands are commands where the CPU executes the SPM instruction.
The SPM instruction is executed after the required control registers are set up. SPM-
based commands are used for erasing and writing Flash memories. In XMEGA
devices, the application code, calibration bytes, and signature bytes are located in
Flash memory.

The exact procedure is as follows:

1. Load address or index into the Z pointer register (R31 and R30) if required.
2. Load data into registers R1 and R0 if required.
3. Load the command code into the Command register (CMD).
4. Load the Protect SPM Register signature (byte value 0x9D) into the Configuration

Change Protection register (CCP). This will automatically disable all interrupts for
the next four CPU instruction cycles.

5. Within the next four CPU instruction cycles, execute the SPM instruction.
6. The operation is finished when the NVM Busy bit (NVMBUSY) is cleared.

The following operations use SPM-based commands:

• Erasing user signature row
• Writing user signature row
• Erasing Flash memory
• Loading Flash page buffer
• Writing Flash memory
• Flushing Flash page buffer

4 AVR1316

2.2 Erasing and Writing Flash memory
There are two ways to update the Flash memory: atomic write and split operation.
With atomic write, Flash locations are erased and written in one operation. With split
operation, erasing and writing are separate operations.

When erasing Flash locations, all bits are set to logic one. A split write can then
program selected bits to logic zero. Split write operations cannot change a bit from
zero to one, as opposed to an atomic write that first erase to logic one and then writes
logic zeros to selected bits. This means that multiple writes to one location with
different values, without erases in between, eventually results in all locations being
logic zeros. This is similar to a logic AND operation between existing value and
written value.

An atomic write takes approximately twice the time of one erase or one write.
Therefore, split operation can be used to save time by erasing Flash locations in
advance, e.g. during initialization. For instance, if the application needs to store vital
data when a power drop is detected, a split write will take less time than an atomic
write.

Another useful application for the split operation is to increase Flash memory
endurance, especially for applications that update Flash locations frequently. By
implementing a scheme where Flash locations are not erased unless they have to,
the split operation feature will increase Flash endurance. This is similar to split and
atomic write for EEPROM. For more details, refer to the application note “AVR101:
High Endurance EEPROM Storage”.

Different erase and write operations, together with bit values before and after the
operation, are illustrated in Figure 2-1 below. For simplicity, the figure shows byte
addresses although the Flash sections are word-addressable.

Figure 2-1. Atomic Write, Split Write and Erase Operations

0 1 0 1 0 1 1 10x57

1 1 0 1 0 0 0 00xD0

Atomic write: 0xD0

0 1 0 1 0 1 1 10x57

1 1 1 1 1 1 1 10xFF

Erase

0 1 0 1 0 1 1 10x57

0 1 0 1 0 0 0 00x50

Split write: 0xF0

1 1 1 1 1 1 1 10xFF

1 1 1 1 0 0 0 00xF0

Split write: 0xF0

2.3 The Temporary Page Buffer
The Flash memory is organized in pages, which in turn are word-addressable. Both
erase and write operations operate on pages. The page size depends on memory
size and is given in the device datasheet. Erase and write operations use a temporary
page buffer to store the individual words until the entire page is ready to be written to
Flash.

8070B-AVR-11/08

 AVR1316

 5

8070B-AVR-11/08

The Flash page buffer is very similar to the EEPROM page buffer, which is described
in application note “AVR1315: Accessing the XMEGA EEPROM”. The difference is
that even if only a few words are loaded in the Flash page buffer, the entire page will
be updated when writing data, or the entire page will be erased when performing a
page erase. For the EEPROM page buffer, only the loaded buffer locations will be
affected when writing or erasing EEPROM pages. Please study the example code for
usage details.

A Flash page write actually consists of two operations: (1) loading the page buffer
with data and (2) writing data to a Flash page. When loading the page buffer, the
lower part of the Flash address is used to select a word in the page buffer, while the
upper part is ignored. When writing or erasing a page, the upper part of the address
selects the page while the lower part is ignored. As the Flash is word-addressable,
the LSB of the address is always ignored.

Once a word has been loaded into the buffer for the first time, the Flash Page Buffer
Active Loading bit (FLOAD) in the NVM Status register (STATUS) will be set. The bit
remains set until either the buffer is flushed or a page write is performed (atomic or
split write).

Note that each word location in the page buffer can only be written once before
flushing the buffer or writing a page.

2.4 Application and Boot Sections
The XMEGA Flash memory is divided into two sections, the Application Section and
the Boot Section. The Application Section stores ordinary application firmware, while
the Boot Section is most often used to store a bootloader application.

The Boot Section can also be used for ordinary application firmware. Since code that
executes SPM-based commands can only run from the Boot Section, the section is
most often used for bootloaders and/or parts of the application firmware that needs to
update Flash memory or run other SPM-based commands.

There are separate lock bits for the Application Section and the Boot Section, so that
read and/or write access to the two sections can be individually limited. Also, the
upper part of the Application Section has its own set of lock bits, independent from
the rest of the section. This upper section is called the Application Table Section,
since it is ideal for storing and maintaining larger tables in Flash memory.

A common scenario for using the Application Table Section is as follows:

• Store application firmware in the Application Section and lock it using
corresponding lock bits.

• Store and maintain larger tables in the Application Table Section, and leave it
unlocks in case it needs updates later.

• Store the parts of the application firmware that maintains the Flash tables (using
SPM-based commands) in the Boot Section and lock it using corresponding lock
bits.

Note that the size of the Application Table Section will always be equal to the size of
the Boot Section.

Figure 2-2 below shows an overview of the different Flash memory sections related to
each other.

6 AVR1316

Figure 2-2. Flash Memory Organization

Application
Table Section

Application
Code Section

Application
Section

Boot
Section

Boot
Section

Read-While-Write
Section (RWW)

No-Read-While-Write
Section (NRWW)

Entire
Flash

Memory

2.4.1 No-Read-While-Write Section

The entire Boot Section is referred to as a No-Read-While-Write Section (NRWW). It
is not possible to read from any location in Flash memory while the NRWW section is
being written to. Reading includes executing code and reading Flash data using LPM-
based commands.

SPM-based commands can only be executed from the Boot Section. If a bootloader
application wants to update its own code, instruction execution is halted while the
Boot Section is being written.

2.4.2 Read-While-Write Section

The entire Application Section is referred to as a Read-While-Write Section (RWW).
This does not mean that it is possible to read from this section while it is being written
to. It means that it is possible to read and execute code from the Boot Section while
the Application Section is being updated.

This feature makes it possible to keep critical functions running while updating the
application firmware or Flash tables in the Application Table Section.

2.4.3 SPM Lock

Some applications update the application section after startup, and then leave it
untouched until the next reset or power cycle. As a safety precaution for this usage,
the NVM module can lock all further access to any SPM-based command.

The SPM Lock command requires a variant of the NVM Action-based command. The
exact procedure is as follows:

1. Load the Protect IO Register signature (byte value 0xD8) into the Configuration
Change Protection register (CCP). This will automatically disable all interrupts for
the next four CPU instruction cycles.

2. Within the next four CPU instruction cycles, set the SPM Lock bit (SPMLOCK) in
NVM Control Register B (CTRLB).

The example software contains an implementation of this functionality.

8070B-AVR-11/08

 AVR1316

 7

8070B-AVR-11/08

2.4.4 Boot Reset Vector

Applications that use bootloader firmware to update the Application Section needs to
configure the XMEGA to start executing code in the Boot Section after power-up or
reset instead of the Application Section. A dedicated fuse bit is used to configure the
startup address to the first location (RESET interrupt vector) in the Boot Section
instead of the Application Section. Please refer to the device datasheet for fuse
settings and programming information.

2.4.5 Interrupt Vector Table Location

Some applications need to keep selected vital functions running even when the
Application Section is being updated. These functions are often interrupt-controlled
and need to be enabled and executable at all times during the update. When updating
the Application Section, no code can be running from it. The interrupt handler code
needs to be duplicated in the Boot Section and the interrupt vector table must be
relocated.

For details on how to move the interrupt table and information on interrupts in
general, please refer to the application note “AVR1305: XMEGA Interrupts and the
Programmable Multilevel Interrupt Controller”.

2.4.6 Reducing Power Consumption

It is possible to configure the NVM module to disable the Flash section that is unused
at any given time (Application Section or Boot Section). This feature minimizes power
consumption in the application since there is no current consumption in the disabled
Flash section. By default, both sections are always enabled, but by setting the Flash
Power Reduction Enable bit (FPRM) in Control Register B (CTRLB), only the section
where code executes is enabled. If the execution flow moves from one section to
another, e.g. a function call, the CPU is halted for 6 clock cycles while one section is
enabled and the other is disabled.

The 6-cycle penalty also applies when an LPM operation accesses a disabled Flash
section.

Note that the Application Table Section is a part of the Application Section and will be
enabled when the Application Section is.

2.5 Command Summary
Table 2-1 below gives an overview of all NVM commands available for self-
programming operations along with the symbolic name used in the source code. The
byte value of the command, its type, and a short description are also included. Please
study the example source code for more details.

Table 2-1. Relevant NVM Commands
Command Code Type Description

NO_OPERATION 0x00 (LPM) Read Flash byte from address Z into R0.

READ_USER_SIG_ROW 0x01 LPM Read user signature byte at index Z into R0.

READ_CALIB_ROW 0x02 LPM Read calibration byte at index Z into R0.

READ_FUSES 0x07 NVM Read fuse byte at index ADDR0 into DATA0.

WRITE_LOCK_BITS 0x08 NVM Write DATA0 to lock bits.

ERASE_USER_SIG_ROW 0x18 SPM Erase user signature byte at index Z.

8 AVR1316
8070B-AVR-11/08

Command Code Type Description

WRITE_USER_SIG_ROW 0x1A SPM Write R0 to user signature byte at index Z.

ERASE_APP 0x20 SPM Erase entire Application Section.

ERASE_APP_PAGE 0x22 SPM Erase application page at address Z, using
only the upper address bits.

LOAD_FLASH_BUFFER 0x23 SPM Load word R1:R0 into page buffer at
address Z, using only the lower address
bits.

WRITE_APP_PAGE 0x24 SPM Write page buffer to application page at
address Z, using only the upper address
bits.

ERASE_WRITE_APP_PAGE 0x25 SPM Erase application page at address Z and
write page buffer to application page at
address Z, using only the upper address
bits.

ERASE_FLASH_BUFFER 0x26 SPM Flush the page buffer.

ERASE_BOOT_PAGE 0x2A SPM Erase boot page at address Z, using only
the upper address bits.

WRITE_BOOT_PAGE 0x2C SPM Write page buffer to boot page at address
Z, using only the upper address bits.

ERASE_WRITE_BOOT_PAGE 0x2D SPM Erase boot page at address Z and write
page buffer to boot page at address Z,
using only the upper address bits.

APP_CRC 0x38 NVM Generate CRC from Application Section
and store in DATA2:DATA1:DATA0.

BOOT_CRC 0x39 NVM Generate CRC from Boot Section and store
in DATA2:DATA1:DATA0.

The algorithm details for the CRC generation can be found in the device datasheet.

2.5.1 Special Case: Reading Lock Bits

The lock bits are I/O-mapped into the NVM Lock Bits register (LOCKBITS), and can
be read directly without any NVM commands.

2.6 Interrupt Considerations
When using interrupts and self-programming operations in the same application, the
following should be considered:

• Take care not to corrupt the Flash page buffer contents. When loading the page
buffer, make sure that no interrupt handlers access the page buffer. If an interrupt
handler is used to access the page buffer, make sure that other parts of the
application do not access the buffer at the same time.

• Instead of continuously polling the NVM Busy flag (NVMBUSY) to detect when an
NVM operation is finished, it is possible to enable the SPM Interrupt by setting an
appropriate interrupt level with the SPM Interrupt Level bitfield (SPMLVL) in the
Interrupt Control register (INTCTRL). The corresponding interrupt handler will be
called whenever the NVM Busy flag (NVMBUSY) is not set. This can be used to
implement an interrupt-controlled Flash memory update. More details on interrupts

 AVR1316

 9

8070B-AVR-11/08

can be found in application note “AVR1305: XMEGA Interrupts and the
Programmable Multi-level Interrupt Controller”.

3 Getting Started
This section walks you through the basic steps for getting up and running with the
XMEGA Self-programming. A few common scenarios are described in the sections
below. For further examples and details, please study the example software.

3.1 Full Application Section Update
A common scenario is for a Bootloader to get updated Flash data from serial
communication through a PC application. In the case of a full Application Section
update, the recommended procedure is as follows:

1. Erase entire application section with the SPM command ERASE_APP.
2. Wait for NVM Busy flag to be cleared.
3. Get one page worth of data over the communication channel.
4. Load the page buffer with the data using the SPM command LOAD_PAGE_BUFFER.
5. Use the SPM command WRITE_APP_PAGE to write the new data to the Flash

page.
6. Wait for NVM Busy flag to be cleared.
7. Repeat from step 2 until all pages are updated.

3.2 Update Selected Locations
Another common scenario is to update selected locations on Flash, for instance
constant tables or parameters stored in Flash memory, preferably in the Application
Table Section. The recommended procedure for such read-modify-write operations is
as follows:

1. Read the Flash page that contains the locations to be updated into an SRAM buffer
using plain LPM read operations (NO_OPERATION).

2. Updated selected locations in the SRAM buffer.
3. Load the page buffer with the data from the updated SRAM buffer using the SPM

command LOAD_PAGE_BUFFER.
4. Use the SPM command ERASE_WRITE_APP_PAGE to erase previous contents and

write the new data to the Flash page.
5. Wait for NVM Busy flag to be cleared.

4 Driver Implementation
This application note includes a source code package with a basic Self-programming
driver implemented in assembly with a C interface. Please refer to the driver source
code and device datasheet for more details.

4.1 Files
The source code package consists of three files:

• sp_driver.s/sp_driver.s90 – Self-programming driver source file
• sp_driver.h – Self-programming driver header file

10 AVR1316
8070B-AVR-11/08

• sp_example.c – Example code using the driver

For a complete overview of the available driver interface functions and their use,
please refer to the source code documentation.

4.2 Doxygen Documentation
All source code is prepared for automatic documentation generation using Doxygen.
Doxygen is a tool for generating documentation from source code by analyzing the
source code and using special keywords. For more details about Doxygen please visit
http://www.doxygen.org. Precompiled Doxygen documentation is also supplied with
the source code accompanying this application note, available from the readme.html
file in the source code folder.

Disclaimer
Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong
Tel: (852) 2245-6100
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR® and others, are the registered trademarks,
XMEGATM and others are trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

8070B-AVR-11/08

	1
Introduction
	2
Module Overview
	2.1
The Non-volatile Memory Module
	2.1.1 14BNVM Action-based Commands
	2.1.2 15BLPM-based Commands
	2.1.3 16BSPM-based Commands

	2.2
Erasing and Writing Flash memory
	2.3
The Temporary Page Buffer
	2.4
Application and Boot Sections
	2.4.1 17BNo-Read-While-Write Section
	2.4.2 18BRead-While-Write Section
	2.4.3 19BSPM Lock
	2.4.4 20BBoot Reset Vector
	2.4.5 21BInterrupt Vector Table Location
	2.4.6 22BReducing Power Consumption

	2.5
Command Summary
	2.5.1 23BSpecial Case: Reading Lock Bits

	2.6
Interrupt Considerations

	3
Getting Started
	3.1
 Full Application Section Update
	3.2
Update Selected Locations

	4
Driver Implementation
	4.1
Files
	4.2
Doxygen Documentation

